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Many authors have studied the problem of the development of a
hydrodynamic boundary layer when a body is suddenly set in motion.
The results obtained are presented most fully in the monographs of H.
Schlichting [1] and L. G. Loitsyanskii [2]. In magnetohydrodynamics
the development of the boundary layer over the surface of an infinite
flat plate for uniform oncoming flow has been closely studied (for ex-
ample [3, 4]). Below, the problem of the development of a plane
magnetohydrodynamic boundary layer is considered in a different for-
mulation. We shall suppose that the distributions of velocity U(x) and
enthalpy h_ (x) are given along the body contour for t = 0, At that
moment the viscosity and thermal conductivity mechanisms are in-
stantaneously "switched on", Viscous and thermal boundary layers be-
gin to grow in a direction normal to the body. The medium in the
boundary layer interacts with the magnetic field, This formulation
corresponds to the development of a magnetohydrodynamic boundary
layer on a body which is set in motion with a jerk, in the case where
the rate of establishment of magnetohydrodynamic flow of the invis-
cid, thermally nonconducting fluid around the body is much less than
the rate of development of the boundary layer. Then U(x) and h _(x)
are found by solving the problem of stationary magnetohydrodynamic
flow of an inviscid thermally nonconducting fluid around a body, or
simply the hydrodynamic flow if the medium interacts with the field
only in the boundary layer.

We shall consider a nonstationary magnetohydro-
dynamic boundary layer whose magnetic field vector
lies in the plane of flow. We assume that the medium
is incompressible (p = const), that the dynamic vis-
cosity and thermal conductivity coefficients, as well
as the Prandtl number P, are constant, and that the
conductivity o is isotropic. We further assume that
together with the usual estimate for a boundary layer
R > 1, the estimates A » 8, Ry, < 1 hold (where §
and & are, respectively, the thickness of the boundary
layer and the characteristic dimension of variation of
the external magnetic field, which is independent of
time) and R and Ry, are the characteristic ordinary
and magnetohydrodynamic Reynolds numbers, deter-
mined for the dimension 6, Then the boundary layer
equations in the coordinate system attached to the body
have the form [4, 5]
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when the parameters at the edge of the boundary layer
are independent of time,

Here the x and y coordinates are reckoned along the
contour and in a direction normal to it, respectively,

Uy'= dU/dx, h is the enthalpy, v is the kinematic vis-
cosity coefficient, 6 is the stagnation enthalpy, o, and
0. are the characteristic conductivity and dimension-
less conductivity at the edge of the boundary layer,
H = H(x) is the normal component of the applied mag-
netic field at points on the contour, E is the potential
part of the electric field component in the z direction
and independent of coordinates, and c is the velocity
of light in vacuum. The functions € (x) and e are de-
termined by the geometry of the applied electromag-
netic field and the conditions of current flow. We note
that in view of the inequality (47mov/c?®) « 1, the rota-
tional component of the electric field in the boundary
layer arising as a result of the time independence of
the induced magnetic field components is negligibly
small, In the general case the quantity E may depend
on time; however, when currents flow freely in the z
direction, then E = 0 if the magnetic field is fixed
relative to the body and E = —¢™*H,V if the body
moves with a velocity V = const in a uniform field H
normal to the direction of motion,

For the solution of system (1)—(3) the boundary and
initial conditions are
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If the conductivity is uniform o° = 1, then equations
(1) and (2) may be solved independently of equation (3).
If ¢ = o(h), then the system (1)—(3) must be solved
jointly.

We shall seek a solution of system (1)—(3) with
boundary conditions (4) in the form
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The electrical conductivity is given by the series
g% = 04 |- log -1~ o, -l-

whose coefficients are found with the help of the ex-
pansion for the enthalpy; o, is calculated from the
enthalpy A, == 0, — 0.5 (vf, / o)™

Setting (5) in system (1)~(3) and equating coeffi-
cients of like powers of t, we obtain the equations
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Equation (6) may be regarded as an ordinary linear
homogeneous differential equation, inthe funetion o, / oy,
of the second order with respect to 1, where x appears
as a parameter, To solve it we employ the first two
boundary conditions. The solution has the form
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Using the last boundary condition, we find
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Equation (8) may be similarly integrated:
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Taking (11), (12) into account, we reduce equation -
(7) to an ordinary linear differential equation in the
function f, / on,0f the second order with respect to n,
which is solved with the help of the first two boundary
conditions. The last condition allows us to determine
the function f,(x,7). We may subsequently integrate
equation (9) as an ordinary differential equation in 64,

It was shown in [4] that the solution of equation
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is the function L{n) = L[n, ¢ (n)], which has the fol-
lowing properties:
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The expression for the function L and the graph of
the function G determined from (13) are given in [4].

_ On the basis of (14), (15) -
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The equations for approximations of higher order
may also be reduced to the integration of ordinary
differential equations, which may be carried out by
quadratures [6].

We shall confine ourselves to a study of the zero-th
and first approximations. The surface friction coeffi-
cient
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The quantity N was calculated by Blasius [1]:
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We shall consider the case of constant electrical conductlvuy
= g, = 1. Then
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If boundary layer separation occurs, then the moment of separa-
tion, determined by taking only the two first approximations into ac-

count, equals
4\
A (3

Since &€ > 0, for separation to occur there must be pomts on the
contour where Ux'<0. Expressing Ux' in terms of the pressure gradient

p, = dp, [ dx, we find
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If the quantity in the braces is negative, then boundary layer
separation will not occur. Since & > 0, for an identical pressure distri-
bution over the body the magnetohydrodynamic interaction determined -
by the force c~lov X H,always favors the earlier separation of the
boundary layer. The electromagnetic interaction on the flow deter-
mined by the force ¢"'E > H,favors earlier separation if » > 0,and
later separation if ¢ <7 0. These conclusions agree with the results of
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[7] where the influence of the magnetic field on boundary layer sepa-
ration was investigated for a stationary flow.
If the body moves with a velocity V in an external uniform field
H,and V | H,, then
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In the case of an infinite flat plate
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and in accordance with (20), boundary layer separation will not occur,

We shall examine the case when the electric field is zero: e = 0.
In this case the magnetic field is fixed relative to the body. We shall
suppose that the flow outside the boundary layer does not interact
with the field (6.° = 0).

For P = 1 we find from (12), taking (10) into account,
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Let o (h,) = 0, and for h > L let the electrical conductivity de-
pend on the enthalpy according to a power law, Then, if b, = h
(the electrical conductivity is enhanced due to kinetic energy dissipa-
tion),
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Here hx is the enthalpy from which the characteristic conductivity
o, is determined,

If the velocities are small ., > h_ (gas hearing occurs as a re-
sult of heat transfer from the wall), then
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Finally, if the surface is thermally isolated and P = 1, then we
find from (8) that 8, = const and
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Where (22) and (24) hold, the quantity C and the moment of sepa-
ration (if it comes about) are equal:
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Values of the integrals iy and i, are given in [4]. When (23) holds
andn=1
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